Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain.
نویسندگان
چکیده
We develop a general framework of evaluating the Stimulated Brillouin Scattering (SBS) gain coefficient in optical waveguides via the overlap integral between optical and elastic eigen-modes. This full-vectorial formulation of SBS coupling rigorously accounts for the effects of both radiation pressure and electrostriction within micro- and nano-scale waveguides. We show that both contributions play a critical role in SBS coupling as modal confinement approaches the sub-wavelength scale. Through analysis of each contribution to the optical force, we show that spatial symmetry of the optical force dictates the selection rules of the excitable elastic modes. By applying this method to a rectangular silicon waveguide, we demonstrate how the optical force distribution and elastic modal profiles jointly determine the magnitude and scaling of SBS gains in both forward and backward SBS processes. We further apply this method to the study of intra- and inter-modal SBS processes, and demonstrate that the coupling between distinct optical modes are necessary to excite elastic modes with all possible symmetries. For example, we show that strong inter-polarization coupling can be achieved between the fundamental TE- and TM-like modes of a suspended silicon waveguide.
منابع مشابه
Formal selection rules for Brillouin scattering in integrated waveguides and structured fibers.
We derive formal selection rules for Stimulated Brillouin Scattering (SBS) in structured waveguides. Using a group-theoretical approach, we show how the waveguide symmetry determines which optical and acoustic modes interact for both forward and backward SBS. We present a general framework for determining this interaction and give important examples for SBS in waveguides with rectangular, trian...
متن کاملComprehensive Theoretical Study on Threshold Power of Stimulated Brillouin Scattering in Single-Mode Fibers
We have investigated and developed a theoretical approach to explore stimulated Brillouin scattering (SBS) phenomena in single mode fiber. SBS happening threshold power condition has been studied in terms of fiber parameters and input pump power. To assess threshold power precisely, the pump depletion effect and fiber loss has been included by employing 1% criterion. The threshold exponential g...
متن کاملForward stimulated Brillouin scattering in silicon microring resonators
Stimulated Brillouin scattering (SBS) has been demonstrated in silicon waveguides in recent years. However, due to the weak interaction between photons and acoustic phonons in these waveguides, long interaction length is typically necessary. Here, we experimentally show that forward stimulated Brillouin scattering in a short interaction length of a 20 μm radius silicon microring resonator could...
متن کاملStimulated Brillouin scattering amplification in centimeter-long directly written chalcogenide waveguides.
Stimulated Brillouin scattering (SBS) amplification is obtained in directly written As2S3 channel waveguides. Centimeter-long waveguides were written using a Ti:sapphire femtosecond laser, operating at a central wavelength of 810 nm. The cross-section of the waveguides was of 4 μm×1 μm. A Brillouin frequency shift of 7.5 GHz is observed, in general agreement with corresponding previous studie...
متن کاملAnalysis of Steady-State Brillouin Nonlinearity in High-Power Fiber Lasers
In the present work, a theoretical analysis of the first-order of stimulatedBrillouin scattering (SBS) in a double-clad (DC) ytterbium (Yb)-doped silica fiber laserin unidirectional pumping mode is presented.An accurate simulation for calculating SBS nonlinearity is performed by considering thecoupled differential rate equations for pump, signal and Stokes powers, as wel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 21 25 شماره
صفحات -
تاریخ انتشار 2013